куба, как на поверхности, так и внутри линий, по которым точки отдаляются одна от другой и приближаются одна к другой, составит проекцию четырЈхмерного тела?
Чтобы ответить на это, нужно выяснить, что же это за линии и что за направление? Линии соединяют все точки данного тела с его центром. Следовательно, направление найденного движения - от центра по радиусам.
При исследовании путей движения точек (молекул) тела при расширении и сокращении мы обнаруживаем в них много интересного.
Расстояние между молекулами мы видеть не можем. В твЈрдых телах, в жидкостях и газах мы не в состоянии его увидеть, потому что оно крайне мало; в сильно разрежЈнной материи, например, в круксовых трубках, где это расстояние, вероятно, увеличивается до ощутимых нашими аппаратами размеров, мы не можем его видеть, потому что сами частицы, молекулы, слишком малы и недоступны нашему наблюдению. В упомянутой выше статье Гольдхаммер говорит, что при определЈнных условиях молекулы можно сфотографировать, если бы их удалось сделать светящимися. Он пишет, что при ослаблении давления в круксовой трубке до одной миллионной доли атмосферы в одном микроне содержится всего тридцать молекул кислорода. Если бы они светились, их можно было бы сфотографировать на экране. Насколько возможно такое фотографирование - это другой вопрос. В данном же рассуждении молекула как некое реальное количество в отношении к физическому телу представляет собой точку в еЈ отношении к геометрическому телу.
Все тела обладают молекулами и, следовательно, должны иметь некоторое, хотя бы очень малое межмолекулярное пространство. Бех этого мы не можем представить себе реальное тело, а разве что воображаемые геометрические тела. Реальное тело состоит из молекул и обладает некоторым межмолекулярным пространством.
Это означает, что разница между кубом трЈх измерений a3 и кубом четырЈх измерений a4 заключается в том, что куб четырЈх измерений состоит из молекул, тогда как куб трЈх измерений в действительности не существует и является проекцией четырЈхмерного тела на трЈхмерное пространство.
Но, расширяясь или сокращаясь, т.е. двигаясь в четвЈртом измерении, если принять предыдущие рассуждения, куб или шар постоянно остаются для нас кубом или шаром, изменяясь только в размерах. В одной из своих книг Хинтон совершенно справедливо замечает, что происхождение куба высшего измерения через наше пространство воспринималось бы нами как изменение свойств его материи. Он добавляет, что идея четвЈртого измерения может возникнуть при наблюдении серии прогрессивно увеличивающихся или уменьшающихся шаров или кубов. Здесь он вплотную приближается к правильному определению движения в четвЈртом измерении.
Один из наиболее важных, ясных и понятных видов движения в четвЈртом измерении в этом смысле есть рост, в основе которого лежит расширение. Почему это так - объяснить нетрудно. Всякое движение в пределах трЈхмерного пространства есть в то же время движение во времени. Молекулы, или точки, расширяющегося куба при сокращении не возвращаются на прежнее место. Они описывают определЈнную кривую, возвращаясь не в ту точку времени, из которой вышли, а в другую. А если предположить, что они вообще не возвращаются, то их расстояние от первоначального момента времени будет всЈ более и более возрастать. Представим себе такое внутреннее движение тела, при котором его молекулы, отдалившись одна от другой, не сближаются, а расстояние между ними заполняется новыми молекулами, в свою очередь расходящимися и уступающими место новым. Такое внутреннее движение тела будет его ростом, по крайней мере, геометрической схемой роста. Если сравнить крохотную зелЈную завязь яблока с большим красным плодом, висящим на этой же ветке, мы поймЈм, что молекулы завязи не могли создать яблоко, двигаясь только по трЈхмерному пространству. Кроме непрерывного движения во времени, им нужно непрерывное уклонение в пространство, лежащее вне трЈхмерной сферы. Завязь отделена от яблока временем. С этой точки зрения, яблоко - это три-четыре месяца движения молекул в четвЈртом измерении. Представим себе весь путь от завязи до яблока, мы увидим направление четвЈртого измерения, т.е. таинственный четвЈртый перпендикуляр - линию, перпендикулярную ко всем трЈм перпендикулярам нашего пространства.
Хинтон так близко стоит к правильному решению вопроса о четвЈртом измерении, что иногда угадывает место 'четвЈртого измерения' в жизни, даже когда не в состоянии точно определить это место. Так, он говорит, что симметрию строения живых организмов можно объяснить движением