с центром.'
Наблюдая расширение куба, мы видим, что расстояние между всеми двадцатью семью кубиками увеличилось пропорционально прежнему.
НазовЈм а - отрезки, соединяющие 26 точек с центром, и б - отрезки, соединяющие 26 точек между собой. Построив внутри расширяющегося и сокращающегося куба несколько треугольников, мы увидим, что отрезки б удлиняются пропорционально удлинению отрезков а. Из этого можно вывести третье правило:
Расстояние между молекулами при расширении увеличивается пропорционально их удалению от центра.
Иными словами, если точки находятся на равном расстоянии от центра, они и останутся на равном расстоянии от него; а две точки, находившиеся на равном расстоянии от третьей, останутся от ней на равном расстоянии. При этом, если смотреть на движение не со стороны центра, а со стороны какой-нибудь из точек, будет казаться, что эта точка и есть центр, от которого идЈт расширение, - будет казаться, что все другие точки отдаляются от неЈ или приближаются к ней, сохраняя прежнее отношение к ней и между собой, а она сама остаЈтся неподвижной. 'Центр везде'!
Последнее правило лежит в основе законов симметрии в строении живых организмов. Но живые организмы строятся не одним расширением. Сюда входит элемент движения во времени. При росте каждая молекула описывает кривую, получающуюся из комбинации двух движений в пространстве и времени. Рост идЈт в том же направлении, по тем же линиям, что и расширение. Поэтому законы роста должны быть аналогичны законам расширения. Законы расширения, в частности, третье правило, гарантируют свободно расширяющимся телам строгую симметрию: если точки, находившиеся на равном расстоянии от центра, будут всегда оставаться от него на равном расстоянии, тело будет расти симметрично.
В фигуре, полученной из растЈкшихся чернил на сложенном пополам листке бумаги, симметрия всех точек получилась благодаря тому, что точки одной стороны соприкасались с точками другой стороны. Любой точке на одной стороне соответствовала точка на другой стороне, и когда бумагу сложили, эти точки соприкоснулись. Из третьего правила вытекает, что между противоположными точками четырЈхмерного тела существует какое-то соотношение, какая-то связь, которой мы до сих пор не замечали. Каждой точке соответствует одна или несколько других, с которыми она каким-то непонятным образом связана. Именно, она не может двигаться самостоятельно, еЈ движение зависит от движения соответствующих ей точек, занимающих аналогичные места в расширяющемся или сокращающемся теле. Это и будут противоположные ей точки. Она как бы соприкасается с ними, соприкасается в четвЈртом измерении. Расширяющееся тело точно складывается в разных направлениях, и этим устанавливается загадочная связь между его противоположными точками.
Попробуем рассмотреть, как происходит расширение простейшей фигуры. Рассмотрим еЈ даже не в пространстве, а на плоскости. ВозьмЈм квадрат и соединим с центром четыре точки, лежащие в его углах. Затем соединим с центром точки, лежащие на серединах сторон, и, наконец, точки, лежащие на половинном расстоянии между ними. Первые четыре точки, т.е. точки, лежашие в углах, назовЈм точками А; точки, лежащие по серединам сторон квадрата, точками В; наконец, точки, лежащие между ними (их будет восемь), точками С.
Точки А, В и C лежат на разных расстояниях от центра; поэтому при расширении они будут двигаться с неодинаковой скоростью, сохраняя своЈ отношение к центру. Кроме того, все точки A связаны между собой, как связаны между собой точки B и C. Между точками каждой группы существует таинственная внутренняя связь. Они должны оставаться на равном расстоянии от центра.
Предположим теперь, что квадрат расширяется, т.е. все точки A, B и C движутся, удаляясь от центра по радиусам. Пока фигура расширяется свободно, движение точек происходит по указанным правилам, фигура остаЈтся квадратом и сохраняет симметричность. Но предположим, что на пути движения одной из точек C вдруг оказалось какое-то препятствие, заставившее эту точку остановиться. Тогда происходит одно из двух: или остальные точки будут двигаться, как будто ничего не произошло, или же точки, соответствующие точке C, тоже остановятся. Если они будут двигаться, симметрия фигуры нарушится. Если остановятся, то это подтвердит вывод из правила третьего, согласно которому точки, находившиеся на равном расстоянии от центра, при расширении остаются на равном расстоянии от него. И действительно, если все точки C, повинуясь таинственной связи между ними и точкой C, которая встретилась с препятствием,