Поиск Философского Камня был буквально вопросом жизни и смерти:
Глядя куда-то поверх моей головы, рабби продолжает:
- Не следует молиться о Камне, если не знаешь, что он означает.
- Камень означает истину! - откликаюсь я.
- Истина? - усмехается рабби точно так же, как император...
- Что же в таком случае означает Камень? - неуверенно допытываюсь я.
- Ответ на этот вопрос ... нельзя получить извне, он может прийти только изнутри!
- Да, конечно, я понимаю: Камень находят в сокровенных глубинах собственного Я. Но... потом-то он должен быть приготовлен, явлен вовне, и тогда, когда он произведен на свет, имя ему - эликсир.
- Внимание, сын мой, - шепчет рабби... - Будь осторожен, когда молишься о ниспослании Камня! Все внимание на стрелу, цель и выстрел! Как бы тебе не получить камень вместо Камня: бесцельный труд за бесцельный выстрел! Молитва может обернуться непоправимым (Г. Майринк, Ангел Западного окна).
Математическая символика более нейтральна и вероятно именно это позволило ей стать общезначимой . Общераспространенность математической символики и ее максимальная независимость от культуры по-видимому свидетельствует, что базовые понятия (архетипы) числа, континуума и т. д. действительно являются эмоционально нейтральными. Возможно, они целиком принадлежат к высшим этажам человеческой психики (то, что по картографии сознания С. Грофа связано с трансперсональным уровнем) и в минимальной степени зацеплены за низшие слои (секс, агрессия...). Впрочем,
Стиль любой зарождающейся математики полностью зависит от той культуры, в котрой она возникает, от особенностей народа, над ней размышляющего (О. Шпенглер, Закат Европы. О смысле чисел).
В связи с переходом от средневековой науки, базирующейся на астрологии и алхимии, к современной математике, следует упомянуть переплетение магического и естественнонаучного языка в трудах врача, математика и астролога Дж. Кардано (1501-1576), описавшего свое решение кубического уравнения в сочинении Ars magna (великое искусство). Его биография напоминает авантюрный роман, а творческая деятельность полностью определялась влиянием мистического опыта. Современный английский математик Р. Пенроуз (см. список литературы) в особенности подчеркивает заслуги Кардано как одного из создателей теории вероятности, а также как математика, впервые использовавшего комплексные числа. Кроме того, начиная с Кардано можно проследить ту линию, которая в конце концов, через работы Абеля и Галуа о разрешимости алгебраических уравнений, привела к появлению современной теории групп, играющей столь большую роль в квантовой физике.
Галилей в Диалоге о двух системах мира (см. Избранные труды, М., 1964) объявляет тайны пифагорейских чисел баснями. Однако его кардинальная идея о тайнах природы, записанных на языке математики (см. цитату в начале главы) по происхождению несомненно восходит к пифагорейской традиции. С этого времени, математическая символика почти полностью вытесняет каббалистическую, алхимическую и другие средневековые символические системы. Успехи ньютоновской теории тяготения, прежде всего, вывод законов Кеплера (см. гл. 4), закрепили положение математики как царицы наук (известное выражение К. Гаусса). Созданный трудами И. Ньютона, Г. Лейбница, И. Барроу, Х. Гюйгенса и других ученых XVII века математический анализ оказался исключительно эффективным средством решения самых разных задач. На протяжении XVIII века огромное количество важных результатов было получено Л. Эйлером, Ж. Лагранжем, П. Лапласом и многими другими математиками, механиками и астрономами.
Несмотря на прикладное значение математики, в настоящее время она представляет собой самостоятельную науку с собственными объектами исследования и эстетическими критериями. Начиная с XIX века, центр тяжести в развитии математики постепенно смещается в сторону более четкого анализа используемых понятий, роста строгости и развития культуры математического доказательства. Этот процесс сопровождается некоторыми издержками:
Математика наших дней походит на крупный оружейный магазин мирного времени. Его витрина заполнена роскошными вещами, которые своим остроумным, искусным, пленяющим глаз исполнением восхищают знатока, а подлинные истоки и назначение этих вещей, их способность поражать врага отходят в сознании на задний план вплоть до полного забвения (Ф. Клейн, Лекции о развитии математики в XIX столетии, т.1, М., Наука, 1989, с.86).
На достаточно большом удалении от