Даже неподвижный объект наделен энергией, заключенной в его массе, и их соотношение выражается знаменитым уравнением Е=мс2 в котором с - скорость света.
Эта константа исключительно важна для теории относительности. Для описания физических явлений, при которых действуют скорости, близкие к скорости света, всегда следует пользоваться теорией относительности. В особенности это касается электромагнитных явлений, одним из которых является свет, и которые подвели Эйнштейна к созданию его теории,
В 1915 году Эйнштейн выдвинул общую теорию относительности, которая, в отличие от специальной, учитывала гравитацию, то есть взаимное притяжение всех тел с большой массой. В то время, как специальная теория была подвержена множеству экспериментов, общая теория еще не нашла своего окончательного подтверждения. И все же она является наиболее широко признанной, последовательной и изящной теорией гравитации, и находит широкое применение в астрофизике и космологии.
Согласно теории Эйнштейна, гравитация способна искривлять время и пространство. Это означает, что в искривленном пространстве законы евклидовой геометрии не действуют, так же как двухмерная плоскостная геометрия не может быть применена на поверхности сферы. На плоскости, например, мы можем нарисовать квадрат следующим образом: отмерить один метр на прямой линии, отложить прямой угол и снова отмерить один метр, затем отложить еще один прямой угол и снова отмерить метр, наконец, в третий раз отложить прямой угол и, вернувшись в исходную точку, получить квадрат. Однако на поверхности шара эти правила не подействуют. Точно таким же образом евклидова геометрия бесполезна в искривленном трехмерном пространстве. Далее, теория Эйнштейна утверждает, что трехмерное пространство действительно искривлено под воздействием гравитационного поля тел с большой массой.
Пространство вокруг таких тел - планет, звезд и т. д. - искривлено, и степень искривления зависит от массы тела. А поскольку в теории относительности время не может быть отделено от пространства, присутствие вещества оказывает воздействие и на время, вследствие чего в разных частях Вселенной время течет с разной скоростью. Таким образом, общая теория относительности Эйнштейна полностью отвергает понятия абсолютного пространства и времени. Относительны не только все измерения в пространстве и времени; сама структура пространства-времени зависит от распределения вещества во Вселенной, и понятие пустого пространства также теряет смысл.
Классическая физика рассматривала движение твердых тел в пустом пространстве. Такой подход и сегодня остается уместным, но лишь по отношению к так называемой зоне средних измерений, то есть в области нашего обыденного опыта, когда классическая физика остается полезной теорией. Оба представления о пустом пространстве и о твердых материальных телах, - настолько укоренились в нашем мышлении, что нам очень трудно представить себе некую физическую реальность, где бы эти представления не были бы применимы. И все же современная физика, выходя за пределы зоны средних измерений, заставляет нас сделать это. Выражение пустое пространство утратило смысл в астрофизике и космологии - - науках о Вселенной в целом, а понятие твердого тела было поставлено под сомнение атомной физикой - наукой о бесконечно малом.
В начале века было открыто несколько явлений атомной действительности, необъяснимых с позиций классической физики. Первое свидетельство в пользу того, что атомы обладают какой-то структурой, появилось с открытием рентгеновских лучей - нового вида излучения, быстро нашедшего свое применение в медицине. Однако рентгеновские лучи были не единственным видом излучения, испускаемого атомами. Вскоре после их открытия стали известны п другие виды излучений, испускаемых атомами так называемых радиоактивных элементов. Явление радиоактивности подтверждало, что атомы таких элементов не только испускают различные излучения, но и превращаются при этом в атомы совершенно других элементов, что говорит о сложности строения атома.
Эти явления не только активно изучались, но и использовались для еще более глубокого проникновения в тайны природы. Так, Макс фон Лауэ при помощи рентгеновских лучей исследовал атомную структуру кристалла, а Эрнест Резерфорд обнаружил, что так называемые альфа-частицы, исходящие от радиоактивных веществ, можно использовать в качестве высокоскоростных снарядов субатомного размера для исследования внутреннего строения атома. Он подвергал атом обстрелу альфа-частицами, определяя по их траекториям