них связаны с простыми операциями, позволяющими достичь симметрии в обычном пространстве и времени. Все взаимодействия частиц характеризуются симметричностью в отношении пространственных перемещений: в Лондоне они происходят точно таким же образом, как и в Нью-Йорке. Они обладают симметричностью и в отношении перемещений во времени, протекая во вторник точно так же, как и в четверг. Одна из симметрий связана с сохранением импульса, вторая - с сохранением энергии. Это означает, что суммарная величина импульса, принимающего участие в каком-либо взаимодействии, а также суммарное количество энергии частиц, включающей их массы, остаются постоянными до начала реакции и после ее завершения. Третий основополагающий тип симметрии связан с расположением в пространстве. Смысл этой симметрии заключается в том, что направление движения частиц, принимающих участие во взаимодействии (скажем, вдоль оси север-юг или запад-восток), не оказывает никакого влияния на результаты взаимодействия. Как следствие этой закономерности, суммарное количество вращения не должно изменяться во время процесса. Наконец, четвертым законом является закон сохранения электрического заряда. Он связан с более сложной операцией симметрии. однако его формулировка в качестве закона сохранения предельно проста: суммарный электрический заряд, присущий всем участвующим в столкновении частицам, остается неизменным.
Существует еще несколько законов сохранения, связанных с операциями симметрии, в абстрактных математических пространствах, как и закон сохранения электрического заряда. Некоторые из них соблюдаются во всех процессах, некоторые - только в определенных их разновидностях (как, например, при сильных электромагнитных, но не при слабых воздействиях). Соответствующие константы можно рассматривать как абстрактные заряды частиц. По той причине, что эти заряды всегда принимают целые или полуцелые значения, они получили название квантовые числа, по аналогии с квантовыми числами атомной физики. Следовательно, каждая частица соотносится с определенным набором квантовых чисел, которые зависят от ее массы и полностью характеризуют все ее свойства.
Например, адроны характеризуются такими величинами, как изоспин и гиперзаряд. Эти два квантовых числа являются константами во всех сильных взаимодействиях. Если мы расположим восемь мезонов, перечисленных в таблице в предыдущей главе, в соответствии со значениями этих двух квантовых чисел, то получим гексагональный паттерн, известный в современной физике под названием мезонный октет. При таком расположении мы наблюдаем несколько осей симметрии: так, частицы и античастицы занимают в шестиугольнике противоположные позиции, а две частицы в центре являются античастицами друг для друга.
Аналогичный паттерн образуют восемь наиболее легких барионов. Он носит название барионный октет. Отличие заключается в том, что в последнем случае античастицы не входят в нее, а образуют идентичный ей энтиоктет. Последний, девятый барион из нашей таблицы - омега, вместе с девятью резонансами принадлежат к другому паттерну - барионная десятка. Все частицы, принадлежащие тому или иному симметричному паттерну, имеют одинаковые квантовые числа, за исключением изоспина и гиперзаряда, от которых зависит их расположение внутри паттерна. Так, все мезоны в октете имеют нулевой спин (то есть не вращаются совсем): барионы в октете имеют спин, равный 1/2, а в барионной десятке - 3/2 (см. рис. 49).
Квантовые числа используются не только для классификации частиц и разделения их на семьи, формирующие четкие симметрические паттерны, и для определения положения каждой частицы внутри соответствующего паттерна, но и для классификации взаимодействий частиц в зависимости от присущих им законов сохранения. Таким образом, два взаимосвязанных понятия - понятия симметрии и сохранения - оказываются чрезвычайно полезными при описании закономерности мира частиц.
Поразительно то, что все эти закономерности приобретают гораздо более простой вид, если мы придерживаемся той точки зрения, что адроны состоят из небольшого количества элементарных единиц, которые до сих пор ускользали от непосредственного наблюдения. Эти единицы получили название кварков. Этот термин был впервые использован Мюрреем Гелл-Манном, который заимствовал это слово из романа Джеймса Джойса Поминки по Финнегану, содержащего такую строку: Три кварка для Мастера Марка, и применил его для обозначения постулированных им частиц. Гелл-Манну удалось объяснить большое количество таких адронных паттернов, как описанные