благодаря этому регрессу.
II Разрешение космологической идеи о целокупности деления данного целого в созерцании
Если я делю целое, данное в созерцании, то я иду от обусловленного к условиям его возможности. Деление частей (subdivisio или decompositio) есть регресс в ряду этих условий. Абсолютная целокупность этого ряда была бы дана лишь в том случае, если бы регресс мог дойти до простых частей. Но если все части в непрерывно продолжающемся разложении в свою очередь еще делимы, то деление, т. е. регресс от обусловленного к его условиям, идет in infinitum, потому что условия (части) содержатся в самом обусловленном и даны все вместе с ним, так как оно целиком дано в созерцании, заключенном в его границы. Следовательно, этот регресс не следует называть только регрессом in indefinitum, как это позволила лишь предыдущая космологическая идея, где я должен был идти от обусловленного к его условиям, которые находились вне обусловленного, т. е. не были даны вместе с ним, а лишь присоединялись к нему в эмпирическом регрессе. Тем не менее о целом, делимом до бесконечности, нельзя сказать, что оно состоит из бесконечного множества частей. В самом деле, хотя все части содержатся в созерцании целого, однако в нем не содержится все деление, состоящее лишь в продолжающемся разложении или самом регрессе, который единственно и делает ряд действительным. Так как этот регресс бесконечен, то в данном целом, правда, содержатся как агрегаты все члены (части), до которых доходит регресс, однако не весь ряд деления, который последовательно бесконечен и никогда не есть целый ряд, следовательно, не может показывать бесконечного множества частей и собирания их в одно целое.
Это общее замечание легко применить прежде всего к пространству. Всякое созерцаемое в своих границах пространство есть такое целое, части которого при всяком разложении в свою очередь все еще представляют собой пространства, и потому оно делимо до бесконечности.
Отсюда совершенно естественно вытекает также второе применение [этого замечания], а именно к внешнему явлению (телу), заключенному в своих границах. Делимость тела основывается на делимости пространства, составляющего возможность тела как протяженного целого. Следовательно, тело делимо до бесконечности, хотя и не состоит еще ввиду этого из бесконечного множества частей.
Так как тело должно представляться как субстанция в пространстве, то кажется, что оно должно отличаться от пространства, поскольку дело идет о законе делимости пространства; ведь можно, конечно,